STAT0041: Stochastic Calculus

Lecture 6 - Brownian Motion

Lecturer: Weichen Zhao

Fall 2024

Key concepts:

• Brownian Motion.

6.1 Definition of Brownian motion

In history, Einstein gave the physical description of Brownian motion in 1905 [1]. We first give the definition of Brownian motion.

Definition 6.1 (Brownian motion) Let $(B_t)_{t>0}$ be a stochastic process, if it satisfies:

- (1) Sample path is almost surely continuous;
- (2) $\forall 0 < t_1 < t_2 < \cdots < t_n, B_0, B_{t_1} B_0, \cdots, B_{t_n} B_{t_{n-1}}$ are mutually independent;
- (3) $B_{t+s} B_t$ is Gaussian distributed with N(0, s).

We say $(B_t)_{t\geq 0}$ is a (one-dimension) **Brownian motion**. If $B_0 = 0$, we say $(B_t)_{t\geq 0}$ is a standard Brownian motion.

Consider natural filtration of $(B_t)_{t>0}$

$$\mathscr{F}_t := \sigma(\{B_s : 0 \le s \le t\}).$$

Condition (2) in definition 6.1 is equivalent to $\forall 0 \leq s < t, B_t - B_s$ and \mathscr{F}_s are independent.

Remark 6.2 A stochastic process X_t is called a Gaussian process, if for all $0 < t_1 < t_2 < \cdots < t_n$ the vector $(X_{t_1}, \ldots, X_{t_n})$ is a Gaussian random vector. Brownian motion is a Gaussian process.

Remark 6.3 Let $(B_t)_{t\geq 0}$ be a standard Brownian motion, then $Cov(B_t, B_s) = t \wedge s$.

Following remark give a useful equivalent definition of Brownian motion.

Remark 6.4 Let $B_0 = 0$, a stochastic process with continuous sample path $(B_t)_{t\geq 0}$ is a Brownian motion if and only if $(B_t)_{t\geq 0}$ is a Gaussian process, and

$$\mathbb{E}B_t = 0, \ \mathbb{E}[B_t B_s] = t \wedge s, \quad \forall \ t, s$$

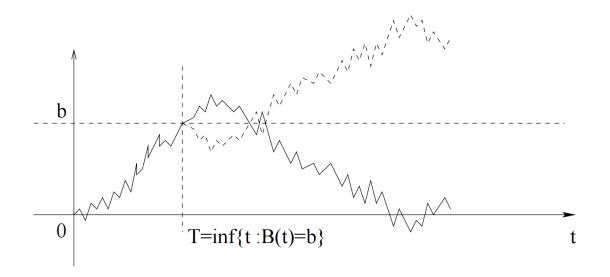


Figure 6.1: The reflection principle in the case of the first hitting time of level b. [2]

Construction of Brownian motion. Refer to section 1.1.2 of [2]

6.2 Basic properties of Brownian motion

Proposition 6.5 Let $(B_t)_{t>0}$ be a standard Brownian motion, then

(1) (shifting) Fixed $t_0 \ge 0$, $B_{t_0+t} - B_{t_0}$ is a Brownian motion;

(2) (scaling) $\forall c \neq 0 \in \mathbb{R}, cB_{\frac{t}{c^2}}$ is a Brownian motion. Especially, $c = -1, -B_t$ is a Brownian motion;

(3) (time reversal)

$$\tilde{B}_t = \begin{cases} 0, & t = 0\\ tB_{\frac{1}{2}}, & t > 0 \end{cases}$$

is a Brownian motion.

Corollary 6.6 (Law of large numbers) Almost surely, $\lim_{t\to\infty} \frac{B_t}{t} = 0$.

Lemma 6.7 (Reflection principle) If T is a stopping time and $\{B(t): t \ge 0\}$ is a standard Brownian motion, then the process $\{B^*(t): t \ge 0\}$ called **Brownian motion reflected** at T and defined by

$$B^{*}(t) = B(t)1_{\{t \leq T\}} + (2B(T) - B(t))1_{\{t > T\}}$$

is also a standard Brownian motion.

The proof of reflection principle need strong Markov property of Brownian motion. See details in section 2.2.1 of [2].

References

- Einstein Albert. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der physik 4 (1905).
- [2] Mörters Peter, and Yuval Peres. Brownian motion. Vol. 30. Cambridge University Press, 2010.